2000 Vol. 2, No. 5 629-631

C₂-Symmetric Planar Chiral Ferrocene Diamides by (—)-Sparteine-Mediated Directed *ortho*-Lithiation. Synthesis and Catalytic Activity

Radoslaw S. Laufer, Ulrich Veith, 1 Nicholas J. Taylor, and Victor Snieckus*, 2

The Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada

snieckus@chem.queensu.ca

Received December 21, 1999

ABSTRACT

A variety of highly enantioenriched singly and doubly (4) functionalized derivatives of 1,1'-N,N',N'-tetraisopropylferrocenedicarboxamide 1 have been synthesized by (–)-sparteine (2)-mediated directed *ortho*-metalation and Pd-catalyzed cross coupling reactions. The synthetic applications of these chiral ligands in asymmetric alkylation of benzaldehyde and Pd(0)-catalyzed allylic substitution have been demonstrated.

In 1996, we reported the first direct and highly enantioselective synthesis of planar chiral ferrocenecarboxamides by (-)-sparteine (2)-mediated³ directed *ortho*-metalation (DoM)⁴ which superseded diastereoselective metalation routes based on chiral auxiliary directed metalation groups (DMGs).⁵ Herein we demonstrate this concept for the preparation of (a) highly enantioenriched 1,2,1'-trisubstituted chiral ferrocenes 3a-1 (Table 1, Scheme 1) which includes adaptation of Suzuki and Stille cross coupling protocols⁶ to

give 2-aryl-1,1'-ferrocenyl diamides (3k-l, Scheme 2) and (b) optically active C_2 -symmetric derivatives 4a-c via asym-

Sammakia, T.; Lantham, H. A.; Schaad, D. R. *J. Org. Chem.* **1995**, *60*, 10. (j) Sammakia, T.; Lantham, H. A. *J. Org. Chem.* **1995**, *60*, 6002. (k) Ahn, K. H.; Cho, C.-W.; Baek, H.-H.; Park, J.; Lee, S. *J. Org. Chem.* **1996**, *61*, 4937. (l) Enders, D.; Peters, R.; Lochtman, R.; Runsink, J. *Synlett* **1997**, 1462

⁽¹⁾ Present address: Process R & D, Lonza Ltd. Valais Works, CH-3930 Visp, Switzerland.

⁽²⁾ Department of Chemistry, Queen's University K7L 3N6, ON, Canada. (3) For a review on (-)-sparteine-assisted deprotonations, see: Hoppe,

D.; Hense, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 2282.
(4) Tsukazaki, M.; Tinkl, M.; Roglans, A.; Chapell, B. J.; Taylor, N. J.; Snieckus, V. J. Am. Chem. Soc. 1996, 118, 685.

^{(5) (}a) Aratani, T.; Gonda, T.; Nozaki, H. Tetrahedron Lett. 1969, 2265. (b) Marquarding, D.; Klusacek, H.; Gokel, G.; Hoffman, P.; Ugi, I. J. Am. Chem. Soc. 1970, 92, 5389. (c) Rebiere, F.; Riant, O.; Ricard, L.; Kagan, H. B. Angew. Chem. Int. Ed. Engl. 1993, 32, 568. (d) Riant, O.; Samuel, O.; Kagan, H. B. J. Am. Chem. Soc. 1993, 115, 5835. (e) Riant, O.; Samuel, O.; Flessner, T.; Taudien, S.; Kagan, H. B. J. Org. Chem. 1997, 62, 6733. (f) Ganter, C.; Wagner, T. Chem. Ber. 1995, 128, 1157. (g) Richards, C. J. Synlett 1995, 74. (h) Uemura, S.; Nishibayashi, Y. Synlett 1995, 79. (i)

Table 1. *n*-BuLi/(-)-Sparteine-Induced Mono-metalation of 1,1'-*N*,*N*,*N*',*N*'-Tetraisopropylferrocenedicarboxamide (1)

		1 10			
entry	\mathbf{E}^{+}	product	solvent	yield, %	ee, %
1	I_2	3a	Et ₂ O	53	59
2	I_2	3a	t-BuOMe	77	70
3	I_2	3a	PhMe	70	89
4	MeI	3b	Et ₂ O	56	68
5	MeI	3b	PhMe	71	92
6	$Ph_2C=O$	3c	Et ₂ O	77	64
7	$Ph_2C=O$	3c	PhMe	92	94
8	$Ph_2C=O$	3c	PhMe	72^{a}	96
9	$Et_2C=O$	3d	PhMe	45	91
10	Bu ₃ SnCl	3e	PhMe	58	\geq 82 b
11	Ph_2PCl	3f	PhMe	53	97^c
12	$(PhS)_2$	3g	PhMe	71	89^c
13	$(PhSe)_2$	3h	PhMe	82	71 ^c
14	TMSCl	3i	PhMe	68 ^a	d

^a 2.1 equiv of both *n*-BuLi and **2** was used. ^b Enantiomeric resolution was not feasible, and ee was determined after conversion into **3c** by transmetalation with *n*-BuLi followed by benzophenone quench. ^c Undergoes racemization; therefore, % ee determination was carried out immediately after purification. ^d CSP HPLC enantiomeric resolution was not feasible, $[\alpha]^{23}$ ₅₇₈ +67.5 (*c* 0.54, CHCl₃).

metric metalation of 2-substituted 1,1'-*N*,*N*,*N*',*N*'-tetraiso-propylferrocenedicarboxamides **3f**,**g**,**i**⁷ which results in diastereoselective amplification of enantioselectivity. We also report preliminary findings which show the potential of tri-(**3**) and tetrasubstituted (*dl*-**4**) ferrocene ligands in benchmark asymmetric alkylation and Pd-catalyzed allylic substitution reactions (Scheme 3).

These results are of potential significance in areas of asymmetric catalysis, enantioselective synthesis, and material science, ⁸ including spectacular industrial applications, wherein planar chiral ferrocenes are receiving flourishing application.⁹

Metalation of ferrocenyldiamide 1^{10} with n-BuLi/2 in Et₂O furnished, almost exclusively, products from electrophilic trapping of monolithium anion, the 1,1',2-trisubstituted derivatives $3\mathbf{a} - \mathbf{c}$, in good yields but with moderate enantioselectivities (Table 1 entries 1, 4, and 6). ^{11,12} Use of solvents of lower coordinating abilities allowed for the preparation of 1,1',2-trisubstituted derivatives ¹³ in augmented optical and chemical yields (entries 1-3). ¹⁴ Toluene was found to give the optimal balance between the level of enantioinduction

Table 2. *n*-BuLi/(-)-Sparteine-Induced Mono-metalation of 2-Substituted-1,1'-*N*,*N*,*N*',*N*'-tetraisopropylferrocenedicarboxamide (**3f**,**g**,**i**)

(SM) ee, %	E^{+}	product	yield,%	dl:meso	ee, %
(3i) 0	$TMSCl^a$	4b	86	51:49	72^b
(3i) c	$TMSCl^d$	4b	75	84:16	91^{b}
(3f) 97	Ph_2PCl^e	4a	45	$> 95 : < 5^f$	$98^{b,7}$
(3g) 89	$(PhS)_2^a$	4c	60	99:1	97 g

 a 2.1 equiv of n-BuLi/2 was used. b Determined as optical purity (op). c [α]^23578 +67.5 (c 0.54, CHCl3). d 4.2 equiv of n-BuLi/2 was used. e 1.5 equiv of n-BuLi/2 was used. f dr determined by ^{31}P NMR. g dr and ee determined using CSP HPLC.

and chemical yield, e.g., 97% ee, 53% yield for $E = PPh_2$ (3f), without recrystallization.¹⁵

Reduction of the amount of (*n*-BuLi/2) to 2.2 equiv caused a slight decline in the chemical yield of the product but did not lead to erosion of ee (entry 8). The heteroatom-hinged phenyl derivatives **3f**-**h** (entries 11–13) were found to surrender their optical integrity on standing in solution.^{4,16} To demonstrate the combined potential of the DoM-cross coupling strategy as a route to aryl-substituted ferrocenes,¹⁷ the iodo (**3a**) and stannane (**3e**) ferrocene diamides were subjected to Suzuki¹⁸ and Stille/Gronowitz¹⁹ cross coupling

(8) (a) Hayashi. T., Togni, A. Eds. Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Material Science; VCH: Weinheim, 1995. (b) Kagan, H. B.; Riant, O. Adv. Asymm. Synth. 1997, 2, 189. (c) Ojima, I. Catalytic Asymmetric Synthesis; VCH Publishers: New York; 1993.

(9) An asymmetric hydrogenation in the synthesis of (+)-biotin by Lonza: McGarrity, J.; Spindler, F.; Fuchs, R.; Eyer, M. (LONZA AG), EP-A 624 587-A2,1995; *Chem. Abstr.* 1995, 122, P81369q. Togni, A. *Angew. Chem., Int. Ed. Engl.* 1996, 35, 1475. Ciba-Geigy AG (Novartis) multiton synthesis of the herbicide (S)-Metolachlor: Spiendler, F.; Pugin, B.; Jalett, H.-P.; Buser, H.-P.; Pittelkow, W.; Blasser, H.-U. In *Catalysis of Organic Reactions*; Malz, R. E., Ed.; Marcel Dekker: New York, 1996, p 153. Spiendler, F.; Pugin, B. (Ciba-Geigy AG), EP-A 0 256982, 1988; *Chem. Abstr.* 1990, 112, 138725c.

(10) Prepared from 1,1'-ferrocenedicarboxylic acid (Aldrich), by sequential treatment with (COCl)₂/cat. DMF/PhMe and HN(*i*-Pr)₂/Et₂O in 80% yield after recrystallization (Et₂O/hexane).

(11) In initial trials, double DoM-electrophile quench (2 equiv of s-BuLi/2 in Et₂O/-78 °C/2 h and then 6 equiv of E⁺/-78 °C to rt, 4 h) led to high yields of the 1,1′,2,2′-tetrasubstituted derivatives 4; however, the reaction exhibited a prohibitively strong preference for the *meso* diastereome and low levels of optical induction (e.g., E⁺ = MeI 70% yield, *meso:dl* = 76:24, 53% ee; E⁺ = TMSCI (4b) 99% yield, *meso:dl* = 96:4, 15% op (op = optical purity); E⁺ = PPh₂CI (4a) 49% yleid, *meso:dl* = >95:<5) (For other data, see Laufer, R. M.Sc. Thesis, University of Waterloo, 1998).

(12) Notably, *n*-BuLi•2 is capable of effecting a double deprotonation of 1 but only in the presence of TMSCl as the electrophilic partner (e.g. in PhMe 71% yield of 4b, *dl:meso* = 72:28, 97% op (Laufer, R. M.Sc. Thesis, University of Waterloo, 1998).

(13) (\dot{S}) absolute configuration for carbinol 3c was established by single-crystal X-ray crystallography. Crystal data for 3c: $C_{37}H_{46}FeN_2O_3$, M=624.4, orthorhombic, $P2_12_12_1$, a=10.100(1) Å, b=17.098(1) Å, C=19.335(2) Å, V=3338.9(8) Å 3 , Z=4; $D_c=1.242$ g/cm 3 , F(000)=1332, C=160 K. Data were collected on a Siemens P4 diffractometer with Mo K α radiation ($\lambda=0.710$ 73 Å); 6416 reflections were collected giving 3208 Friedel pairs. The structure was solved using Patterson and Fourier routines (SHELXTL IRIS) and refined by full-matrix least-squares on F resulting in final R, $R_{\rm W}$, and GOF (for 5445 data with $F>6.0\sigma(F)$) of 0.0238, 0.0272, and 2.05, respectively, for solution using the (S) model. The corresponding values for solution of the (R) model were 0.0433, 0.0492, and 3.70.

(14) Typical procedure for lithiation of 1: A solution of (–)-sparteine (0.91 mL, 4.2 mmol) or TMEDA (0.64 mL, 4.20 mL) in PhMe (20 mmol) was stirred at rt (5 min), cooled to -78 °C, and treated with n-BuLi (solution in hexane, 4.2 equiv). After 10 min of stirring at -78 °C, a solution of 1 (0.44 g, 1.0 mmol) in PhMe (4.5 mL) was added dropwise (ca. 1 drop/10 s). The stirring was continued (1–2 h) at -78 °C, and the reaction mixture was quenched by addition of an electrophile (6 mmol) and allowed to warm to rt (or 0 °C for 3f), treated with saturated aqueous NH₄Cl, extracted with Et₂O or CH₂Cl₂, washed with brine, dried (MgSO₄), concentrated in vacuo, and purified by flash chromatography on silica gel (deactivated with 2% Et₃N for diphenylphosphine derivative 3f). Diphenylphosphine derivatives 3f and 4a were found to be air-sensitive but could be stored indefinitely as solids under argon at -20 °C.

(15) Toluene offers greatly improved solubility of ferrocenyldiamide 1. The opposite solvent effect was observed in (-)-sparteine-assisted DoM of *N*,*N*-diisopropylferrocenecarboxamide (ref 4).

(16) Derivative **3g** undergoes racemization at rt, $t_{1/2} \approx 9$ h at rt (either in 90:10 or 98:2 hexane:*i*-PrOH).

(17) Quesnelle, C. A.; Familioni, O. B.; Snieckus, V. Synlett 1994, 349 and references therein.

(18) Pd(PPh3)4/ 2M aqueous Na2CO3/DME/85 °C/5 d.

630 Org. Lett., Vol. 2, No. 5, 2000

^{(6) (}a) Suzuki, A. In *Metal-catalyzed Cross-coupling Reactions*; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, p 49. (b) Mitechell, T. N. ref 6a, p 167.

⁽⁷⁾ Recently, Jendralla reported a synthesis of optically pure *C*₂-symmetric 2,2'-bis(diphenylphosphino)-1,1'-ferrocenedicarboxamide: Jendralla, H.; Paulus, E. *Synlett* **1997**, 471.

conditions with (2,4-dimethoxyphenyl)boronic acid²⁰ and bromobenzene, respectively, to give aryl derivatives 3k (20% yield, unchanged ee, together with 70% of unreacted 3a) and 3l (35% yield in addition to 51% of 1)²¹ (Scheme 2).

Scheme 2

X
$$CON(i-Pr)_2$$
Fe $CON(i-Pr)_2$
 Ar
 $CON(i-Pr)_2$
 Ar
 $CON(i-Pr)_2$
 Ar
 $CON(i-Pr)_2$
 $CON(i-Pr)$

Highly diastereo- and enantioenriched, tetrasubstituted ferrocenyldiamides *dl*-4 were prepared by subjecting 1,2,1′-trisubstituted ferrocenes 3 to a further (—)-sparteine-assisted asymmetric DoM reaction. Electrophilic quench furnished products 4a—c with diastereoselective amplification of enantioselectivity (e.g., entry 1 in Table 2).^{22,23} The (*R*,*R*) absolute configuration of products 4a—c must be dictated by the (*R*) stereochemistry of the corresponding chiral precursors 3f,g,i. Noteworthy is the relatively greater optical stability of 1,1′,2,2′-tetrasubstituted dervatives; for example, in solution, 2,2′-bis(diphenylthio)-1,1′-ferrocenediamide 4c maintained its enantioenrichment at a 70% level even after 20 days of standing²⁴ compared to 2-(diphenylthio)-1,1′-ferrocenediamide 3g which, under the same conditions, undergoes complete racemization within 1.5 days.¹⁶

In a preliminary study of the utility in asymmetric synthesis, chiral 1,1'-bis(diphenylphosphino)-2,2'-ferrocenyldiamide $\bf 4a$ was tested as an auxiliary ligand for enantioselective Pd-catalyzed allylic substitution of (\pm)-phenylcinnamyl acetate ($\bf 5$) (Scheme 3).²⁵ The reactions were conducted using 2.5 mol % of [Pd(η^3 -C₃H₅)Cl]₂ as the Pd source under Trost's alkylation conditions (3.0 equiv of N, O-bis(trimethylsilyl)acetamide/0.03 equiv of AcOK/3.0 equiv of CH₂(CO₂Me)₂/CH₂Cl₂ /rt/10 h)²⁶ or employing sodiodimethylmalonate (3.0 equiv of NaCH(CO₂Me)₂/THF/rt/36 h). In both cases, alkylated product $\bf 6$ was obtained in essentially quantitative yield and with good enantiocontrol (96% yield, 84% ee (R)).²⁷

$$\begin{array}{c} \text{Scheme 3} \\ \text{OAc} \\ \text{Ph} \\ \text{5} \end{array} + \text{CH}(\text{CO}_2\text{Me})_2 \\ \begin{array}{c} \frac{5 \text{ mol} \% \text{ Pd}(0)}{10 \text{ mol} \% \text{ 4a}} \\ \text{Ph} \\ \text{5} \end{array} + \begin{array}{c} \frac{5 \text{ mol} \% \text{ Pd}(0)}{10 \text{ mol} \% \text{ 4a}} \\ \text{Ph} \\ \text{6} \end{array} \begin{array}{c} \text{84} \% \text{ ee} \\ \text{6} \\ \text{84} \% \text{ ee} \\ \end{array}$$

Furthermore, the 1,1',2-ferrocenyldiamides **3c,d,k** exhibit moderate to good catalytic activities in the reaction of Et₂-Zn with PhCHO (Table 3, Scheme 3).^{28–30}

Table 3. Ferrocenyldiamide-Catalyzed $(3c,d,k)\ \mathrm{Et_2Zn}\ \mathrm{Addition}$ to PhCHO

entry	E	ligand (ee, %)	solvent	yield, %	ee, % ^a
1	Ph ₂ C(OH)	3c (96)	hexane	98	61(<i>S</i>)
2	Ph ₂ C(OH)	3c (96)	PhMe	98	12(R)
3	Ph ₂ C(OLi)	3c· Li (95)	PhMe	70	$47(S)^{b}$
4	$Et_2C(OH)$	3d (90)	hexane	37	60(S)
5	2,4-di(MeO)Ph	3k (89)	PhMe	43	90(<i>S</i>)
^a By CSP HPLC. ^b $[\alpha]^{23}$ _D = 21.7 (c. 3.43, CHCl ₃), see ref. 29b					

In summary, a direct and highly efficient enantioselective synthesis of mono- $(3\mathbf{a}-\mathbf{h})$ and C_2 -symmetric, homoleptic $(4\mathbf{a}-\mathbf{c})$ ferrocene diamides from achiral ferrocenyldicarboxamide 1 using sparteine-mediated DoM and combined DoM—cross coupling $(3\mathbf{k},\mathbf{l})$ have been demonstrated. The preliminary results for use in asymmetric synthesis and the current intense activity in ferrocene-based catalysis^{8,9} stimulate our continuing efforts in this area.

Acknowledgment. We warmly thank Dr. Heiner Jendralla for exchange of correspondence and helpful comments on this manuscript. We are grateful to NSERC Canada for support under the Industrial Research Chair (Monsanto/Searle) and Research Grant programs. R.L. is an Ontario Graduate Scholar, 1996–1997.

Supporting Information Available: Experimental procedures and details of compound characterization. This material is available free of charge via Internet at http://pubs.acs.org. OL991381S

Org. Lett., Vol. 2, No. 5, 2000

⁽¹⁹⁾ $PdCl_2(dppf)/CuO/DMF/150$ °C/18 h; Gronowitz, S.; Bjork, P.; Malm, J.; Hornfeldt, A.-B. *J. Organomet. Chem.* **1993**, 460, 127.

⁽²⁰⁾ Alo, B. I.; Kandil, A.; Patil, P. A.; Sharp, M. J.; Siddiqui, M. A.; Snieckus, V. *J. Org. Chem.* **1991**, *56*, 3763.

⁽²¹⁾ Ee for 31 was not determined because of availability of only an approximate value for ee of the ferrocenyltin 3e.

⁽²²⁾ Beak, P.; Kerrick, S. T.; Wu, S.; Chu, J. J. Am. Chem. Soc. 1994, 116, 3231.

⁽²³⁾ Typical procedure is analogous to that used for the monometalation of 1 (ref 14)

⁽²⁴⁾ **4c** undergoes very slow racemization at rt, $t_{1/2} > 40$ d at rt (90:10 hexane:i-PrOH).

⁽²⁵⁾ For reviews on catalyzed allylic substitution reactions, see: (a) Trost, B. M.; Van Vranken, D. L. *Chem. Rev.* **1996**, *96*, 395. (b) Trost, B. M. *Acc. Chem. Res.* **1996**, *29*, 355. (c) Helmchen, G. *J. Organomet. Chem.* **1999**. *576*. 203.

⁽²⁶⁾ Trost, B. M.; Murphy, D. J. Organometallics 1985, 4, 1143.

⁽²⁷⁾ Enantiomeric excess determined by CSP HPLC (Chiralcell OD, eluent = n-hexane/i-PrOH 99:1, flow 0.2 mL/ min, t_R (minor) 58.78, t_R -(minor) 63.50 min), [α]²³ $_D$ +15.9 (c 0.71, EtOH).

⁽²⁸⁾ Noyori, R. Asymmetric catalysis in organic synthesis; Wiley: New York, 1994.

^{(29) (}a) In a typical reaction, to a stirred solution of PhCHO (0.1 mL, 1.6 mmol) and a ferrocenyl ligand (0.05 mmol) in either hexane (15 mL) or PhMe (5 mL) under an inert atmosophere was added Et₂Zn (1.6 mL, 1.0 M in hexane, 1.6 mmol) at rt, and the resultant mixture was stirred at rt for 48–72 h before addition of 0.2 M aqueous HCl at 0 °C. After the standard workup, the crude material was analyzed by CSP HPLC (Chiralcel OD column, eluent 99:1 n-hexane/i-PrOH, flow 0.5 mL/min, t_R 27.20 and 29.66 min). (b) For the value of the optical rotation, see: Packard, R. H.; Kenyon, J. J. Chem. Soc. 1914, 1115. Also see: Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 6071.

⁽³⁰⁾ Quite unusual and, to our knowledge, previously unobserved is the variation in the enatiotopicity of the reaction as a function of the solvent (entry 1 vs entry 2) and use of lithium salt of carbinol 3c (entry 2 vs entry 3). We currently do not have an explanation for this observation.